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The limit distribution of energy level spacing is studied for the system of two 
harmonic oscillators with generic ratio of frequencies. It is proved that for any 
fixed generic ratio e no limit distribution exists, but for random e with any 
absolutely continuous distribution p(e)de  on [0, 1] a universal random limit 
distribution of the energy level spacing exists. Some properties of the random 
limit distribution are discussed. 
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1. I N T R O D U C T I O N  

This work derives from the attempts to prove or to disprove the following 
general conjecture discussed in ref. 1: Energy level spacing in the spectral 
interval E o < E < E  1 for two harmonic oscillators with generic ratio of 
frequencies has a limit distribution when E1 ~ oe. It turns out that the 
situation is a little bit unusual and in the present paper we prove and 
disprove this conjecture simultaneously. The point is that for any f ixed  
generic irrational ratio e of frequencies no limit distribution exists, but for 
random ~ with any absolutely continuous distribution on [0, 1 ] a random 
limit distribution of energy level spacing exists. 

The Hamiltonian of the model is 

2 2 2 2 2 2 
H = P l  + O)lql + P2 + c~ 

2 2 ' ~ c% > 0  
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The quantum energy levels of the system are labeled by two integer 
numbers m, n/> 0 and they have the form 

E,~n = Eoo + moo1 + no2 

The problem is to study the distribution of energy level spacing (the 
distance between neighbor levels) in the spectral integral Eoo<~Em~ <<.E 
when E ~ oo. Since 

E~n = E00 + Col(rn + nc~) 

where c~= co2/co 1>0,  the problem is reduced to the similar one for the 
sequence 

)Lm~ = m + no~ , m ,  n >. O 

The case of rational c~ is not interesting, because of the strong degeneracy 
of {2mn } (see ref. 1); hence we shall assume that c~ is irrational. Without 
loss of generality we may assume that 0 < ~ < 1. 

The distribution of neighbor distances in the sequence ~mn = m + n~ 
for the first time was considered in ref. 1. In that paper is was shown that 
for generic e there is no energy level clustering, which was observed for 
nonlinear integrable systems, and some other properties of the spacing 
distribution were studied both theoretically and numerically. 

In ref. 2 it was discovered that locally the distance between neighbor 
energy levels can take only three values, which means strong rigidity of the 
local structure of the spectrum and implies strong "repulsion of energy 
levels." It was shown also that the local spacing distribution is fluctuating, 
so that no limit of this distribution exists when the spectral interval goes 
to oo. 

In ref. 3 a particular case of the golden mean e = (x / -5-1) /2  was 
considered. It was proved that in that case the limit spacing distribution 
does exist if the limit is taken by the spectral intervals {0~<2mn<fi}, 
j ~ O% where f l ,  f2, f3,.., are the Fibonaeci numbers, and it does not exist 
for general sequence {0 ~< 2mn < 2}, A ~ oo. 

In the present paper we develop the approach suggested in ref. 3 to 
study the case of generic ~. Let 

1 

1 a l + - -  
a2 + ... 

= [a~, a2,...], be the expansion of e into the continued fraction, and 

PJ= [al ,  a2 ..... aj], j~> 1 
qj 
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be the approximants of c~. Denote 

Qj= {2m~,=m+nc~[m, n ~> 0; p j >  Z,,,, ~> 0} 

and let 0 < eso < ejl </;j2 < " ' '  be all the different neighbor distances in faj. 
As we shall see, each such distance ej~ is multiple, i.e., there exist many pairs 
of neighbor elements 2 . . . .  2m,n,~ff2j with ]2mn--.,~m,n,[=gfl. Denote by 
Ls~ ~> 1 the multiplicity of the distance esz and put 

L j l  

~J~ I-%1 - 1 

where [f2j[ is the number of elements in ~s" It is clear, that ~jt is the 
fraction of e jr among all the neighbor distances, or the probability of ej~ 
with respect to the uniform distribution on the set of neighbor distances. 
Denote by 

g j l  sj,-- 
~0 

the normalized to ejo neighbor distances e jr and by 

pj( ds) = ~ ,~j,a(s - sj,) ds 
l 

the distribution of the normalized neighbor distances. Remark that sit, ztil , 
and ps(ds) depend on c~. The main problem we are interested in is the 
existence of a limit of the sequence of the distributions ps(ds) when j --+ oo. 

We will use weak convergence of probability measures and random 
variables (see ref. 4). Recall that a sequence of probability measures #n(dx) 
in R ~ converges weakly to a probability measure I~(dx) iff for any bounded 
continuous function f(x), 

lim f. f(x ,~ f(xt,(d l (1. i 
n ~ o  k k 

Respectively, a sequence of random variables ~n ~ Rk converges weakly to 
a random variable ~ E R k iff the probability distributions of ~n converge 
weakly to the one of 4. We will write in such cases that 

/~ = w-lira #n, ~ = w-lim ~n 
n ~ c o  n ~ o o  

T h e o r e m  1.1. Let c~ be a random variable on [0, 1] with an 
absolutely continuous distribution p(c~)dec Then for any l~>0 there exist 
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w-limj~ ~ sst = sl and w-limj~ ~ irjl= nl and the limit random variables s t 
and 7r t do not depend on the distribution p(c~) de. 

The following theorem gives uniform estimates for sjt and 7rst. 

T h e o r e m  1.2. For any c~ we have the estimate 2Z>jsjt>>.l/2 and 
~jt <~ C/(1 + l) 2, where C is an absolute constant. 

Next we describe the joint distribution of the random variables 
{st=w-limj~o~sjl, ~t=w-limj~oo/~st; /~>0}. To do this we need to 
introduce some notations. Let 

be the Gauss map and 

/~(d~) = (1 + , )  In 2 

be the absolutely continuous invariant measure of this map. Let #~(d,  rift) 
be the natural extension of #(d~). It is a probability measure on the unit 
square [0, 1 ] • [-0, 11 and it is invariant and ergodic with respect to the 
map 

(;} G~. (~, ~ ) - ,  ' [ I / ~ ] + B  

(see Section 3 below). It is worth to note that #~(d~d3) is singularly 
continuous with respect to Lebesque measure d~d3 and its support 
coincides with the unit square [0, 1 ] • [0, 1 ]. 

Let 7 = (", 3 ) e  [0, 1] x [0, 1] be a random variable with the distribu- 
tion ~t~(d, dfl). 

T h e o r o m  1.3. Under the assumptions of Theorem 1.1 there exist 
bounded functions Ft(7), Rt(7) on [0, 1] • [0, 1], which are continuous at 
almost all 7 (with respect to the distribution/~o~ of ~), such that st = Ft(7), 
s t =  Rt(7), l~>0. The functions Ft, RI, l>~O, are universal in the sense that 
they do not depend on the distribution p(e) d~. 

Theorems 1.2 and 1.3 enable us to prove also the following statement. 

T h e o r e m  1.4. Under the assumptions of Theorem 1.1 

lim pj(ds) = p(ds) = ~ ~rt6(s- st) ds 
j ~ o o  1 = 0  
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The limit is unders tood  as w-lim of the distr ibution functions Pj(x)= 
~L~ pj(ds)= Z ~ l  s!,.<x} rcjt: 

w-lira Pj(x)= P(x)= p(ds)= ~ ~ 
j ~ oo - - o o  { l l s l ~  x }  

for any x/> 0. 

Our  last theorem shows that  for generic fixed c~ the sequence pj(ds) 
has no limit when j - - r  oo. 

T h e o r e m  1.5.  Fo r  a lmost  all ~ the sequence ~Zjo has no limit when 
j ----~ O(3. 

RemarR. The same can be shown for any 7z jr , l/> 0, and @, l/> 1. 

2. EXACT F O R M U L A S  FOR NEIGHBOR D ISTANCES 

Let 0 < c~ < 1 be an irrat ional  number .  Expand  it into the cont inued 
fraction, c ~ = [ a l ,  a2,...]. Recall some definitions and propert ies  of 
cont inued fractions (see, e.g., ref. 5). The sign = below means  a definition, 
the sign = means  an equality. We have 

Pn = [ a l ,  a2,...,an], (p,, q,) = 1 
qn 

P,=anpn 1 + P , - 2 ;  P - 1  = 1 ,  Po =-0, Pl = 1  

q,=a, qn 1 + q , - 2 ;  q _ a - 0 ,  q o = l ,  ql=al 

q .P . -1 -P .q .  1 = ( - 1 ) "  

qn-l= jan, a n - 1  ..... a l ]  
qn 

e,, = Iq , ,a  - P,,[ = ( -  1 )" (q,,a - -p , , )  

8n= - - a n S n _ l " ~ ' S n _ 2 ;  8 1 = 1 ,  

q n ~ n _ l  - ] - q n _ l ~ 3 n  = l 

8n 1 
rn  = ; r n -  1 - -  - -  

t?'n 1 a n -k- r n 

r , = G E r n _ l ] = - { Z  }, r o = ~  

[ 1 ] 

~ n = F n C ' n - - 1  "~" " ' "  ~ f n ' ' "  

80=@ 

ro  = G " [ ~ ]  . . .  G~ 
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G~ - ~, G"[c~]=_G[G ~ 1~0{] ] 

a =AG,-I[~]=_A[G ~ 1[~]] 

r~ = G"[~] 

All the subsequent considerations are based on the following two 
propositions. 

P r o p o s i t i o n  2.1. The set of neighbor distances in the set M e =  
{ k - 1  <<.m+~n<~k; m, n>~0}, k ~ N ,  coincides with the same in the set 
N,-= {{m~}, 0~<m<l} ,  where l =  [k/~] + 1, which is considered on the 
circle $1= [0, 1], 0 = 1. 

P r o p o s i t i o n  2.2. Let l<~i<~aj. Then if qj_a+iqj_l<l<.qj 2+ 
( i+  1)qj_l ,  then the neighbor distances in the set Nt can be only one of 
the following three numbers: g j _ l , g j _ 2 - - ( i - - 1 ) ~ j  1, ~j 2--i~j-I  �9 The 
numbers 2(/; e) of the neighbor distances of the length ~ are equal to 

)~(/;gj 1)=l--qj 1 

2(/; ej 2--( i - -1)~j_l)=qj_2+(i+l)qj_ . l - - I  (2.1) 

,Z(/;ej :--i~j 1)=l--q, =--iq,_, 

Proposition 2.1 in proved in refs. 2 and 3. Proposition 2.2 is well known 
and we omit its proof. Remark only that it has a simple visual explanation: 
When we add the point (l~} to Nt to obtain N/+, ,  some segment of length 
~j- 2 - -  (i - 1 ) ~j_ 1 is split into two segments of lengths g j_ 2 - -  iej_ 1 and e j_ 1. 
It continues until all the segments of length ej 2 -  ( i -  1)ej_ 1 are exhausted. 
Then the process begins of splitting the segments of length e j_ 2 - iej_ 1 into 
two segments of lengths e j _ 2 -  ( i+  1)ej 1 and ej_, and so on. 

Remark that ej_2-ajgj_l=gj,  so ej_2-iej l=e j+(a j - i ) e j  1 = 

gj + kej_ 1, where k = a j -  i. We shall call the sequence ej + e j_ 1, 8j + 2~j_ 1 ,..., 
ej + aj e j_ 1 = ej 2 the jth series of neighbor distances and we shall denote it 
by Ej. One can see easily that any element from Ej is less than any element 
from Ej_I.  Denote E =  Uj>_.I Ej. 

C o r o l l a r y  o f  P r o p o s i t i o n  2.2. All possible neighbor distances in 
the sets NI can be only elements from the set E = U j > I E j - -  
Uj>.l{gj+kgj 1 ,  l~k<~aj} and the number 2(l;ej+kej_l) of the 
neighbor distances of length ej + kej_ 1 in the set NI is equal to 

2 ( / ; e j+ke j  1 ) = q j _ l - l l - q j _ z - ( a j - k + l ) q j  1[ 

if qj_2+(aj-k)qj_l<~l<~qj_2+(aj-k+2)qj_l  (2.2) 

2(/; ej + k~j_ 1 ) = 0 otherwise 
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Thus 2(/; ej + kej ~) is maximal at 1 = qj_ 2 + (aj - k + 1 ) qj 1 ,  where it 
is equal to q/_ t, and it decreases linearly from both sides of the maximum 
point (see Fig. la). Denote 

M ( A ) =  {2m.=m+o~nlm, n>~O;O<.2m. <A}  

For A c M ( A )  put P r A - [ A I / I M ( A ) I ,  where IAI means the number of 
elements in A, so that Pr A is the probability of A with respect to the 
uniform distribution in M(A). Let e = e(2mn ) be a function on M(A) which 
corresponds to 2m,~M(A), the distance Amn=imn--tm,n, from 2mn to 

3, 

. . . . . . . . . . . . . .  

Z ~Ctrt~n-.t • 2..< k< Ctrc 

(a) 

Fig. 1. 

e~%_1 ' 

(b) 

The graphs of the functions i ( l ; e )  on the segment qn_l<~l<~qn for various e. 
(a) a.~>2. (b) a . =  1. 
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the neighbor ~.~,,, (5 is not defined for 200 ) . Denote A(e~ 
{2ms ~ M(A)[e(2mn) = e~ 

P r o p o s i t i o n  2.3. All possible neighbor distances in the set 
M(&) = {2m, = m + an I m, n >~ 0; 0 ~< 2,,n < PS} can be only elements of the 
set 

E(J)={ej_~}~EjwEj 1~ "" UEl={ej_~;ei+ke, 1 ,  l<~k<~ai, i<~j} 
and for j ~ oo 

Pr A(Ej_ ~ ; &) = (1 -- fij)2 + O(2 s/2) 

Pr A(e s + e s_ t ; Ps) =/37 + 0(2 -j/2) 

PrA(ej+kej_a;&)=Z~+O(2-J/2), 2<~k<~aj 

PrA(ei+k~_~;&)=2fl~...flZ~+O(2-s/2), l~k<~aj, i< j  

where/~i= [ai, ai_ l,..., all. 

Remark. Here and below 0(2 j/2) means a remainder which is 
estimated by C2 j/2 with some absolute constant C. 

ProoL Denote l j= [pjc~] + 1 = q s -  [(-1)JeJc~], so that lj=qj, i f j i s  
even and l s = qs + 1 if j is odd. Consider first the case when j is even. 
Let M(pj)=M(pj)u { & } = { 2 ~ , = m + ~  nlm, n>~O; 0~<2,,n~<ps }. Then 
2~r(p s) = UP~_I Mk, so by Proposition 2.1 the set of neighbour distances in 
M(ps) coincides with the same in all the sets Nz with l~< 1i= qs" By Propo- 
sition2.2 and its Corollary this set is E (j). Since M(ps)=M(ps)\{ps } 
the same is valid for M(pj). Next, by formulas (2.1) (see also Fig. 1) 

Zo<l<~qj)~(l;ej 1) Zqj l<l<~qs(l--qj-i) 
Pr A(cj_I; &)-  ZO<l<~qs I - 2o<l<~qj I 

- q~ q- 0 

Recall that qj_jqi=~j. Besides, qs=ajqj_~ +qj 2=(a ja j_ l  + 1)qj_~+ 
asqs_ 3 >2qs_ :, so q~> C ~2s/a; hence 

1 --< C.2 -~/2 (2.3) 
q~ 

It gives that Pr A(g~_ 1; P~)= (1 _fls)2 + 0(2-;/2), which was stated. Next, 

~.O<l<~q~'~(l;gj-x Wgj) ~,qs-q~_l<l<~q~(l--q]+qj-l) 
Pr A(e~ t + e~; pj) = ~O<l<<ql -- ~,O<l<~ql 

q q; +o 



Two Harmonic Oscillators wi th  Generic Ratio of Frequencies 269 

which was stated. Similarly, one can calculate PrA(e~+kes_l;Pj), 
2 <~ k <~ aj. Now, by the Corollary of Proposition 2.2, 

Zo<t_< q, ;4l; gi + ke,_ 1) 
PrA(ei+kgi  1 ; P j )  = ~_.o<l<~qj l 

q T -  + O = 2/3 2. . . /3 3 + 0(2  j/2) 

For even j, the Proposition is proved. When j is odd, the set of neighbor 
distances in 2~(pj) coincides with the same in all the sets Nt, l <<. lj =qj + 1, 
so in comparison with the case of even j we have an additional set Nq,+ 1. 
Since tNqs+l[=qj+l all the probabilities PrA(ei+ke, I;Pj) change in 
O(1/qj), which is by, (2.3), 0(2-J/2). This remark proves Proposition 2.3 
completely. 

Introduce the function s = S(},mn ) of normalized neighbor distances in 
M(pj), 

e(L..) 
s 

ej 1 e j - - I  

Proposition 2.4. All possible normalized neighbor distances in 
M(pj) can be only elements of the set 

s(J ={1} sjcosj 1,o . . .  , o s l  

where 

{ 1 (k+r~),l<.k<~a~} l< . i<j  Sj={k+r/,l~k<<.aj},  Si= _l~ . . r  i 

and 

Pr{s = 1 } = (1 -/3j)2 _[_ 0(2--J/2) 

Pr{s = 1 + ra} = f12 + 0(2-J/2) 

Pr{s=k+rs}=232+O(2 j/2), 2<<.k<<.aj 

P r { s - r s _ 1 . . . r  (k+ri)}=2/32...f12+O(2 j/2), 

Prook All possible values of s = g/e s , are 

gi-kke.,_l gi_l(k_t_ g i ) =  _ _ 1  (k+r~) 
gj--1 gj 1 8i 1 rj 1 . . . r i  

l ~ k ~ a i  

which was stated. 
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3. CONSTRUCTION OF DUAL GAUSS DISTRIBUTION 

This section is auxiliary. Here  we prove the existence of l im,~  ~ ft, = fi, 
where ft, = [ a , ,  a , _ l  ..... a l J  and ~ =  [ a l ,  a2,...] obeys the Gauss  distri- 
but ion dc~/[(1 + a ) l n  2]. We call the distr ibution of fi the dual Gauss  
distr ibution and we study some propert ies  of it. 

P r o p o s i t i o n  3.1.  Let ~ =  [ a l ,  a2,...] obey the Gauss  distr ibution 
de/I(1 + c Q l n 2 ] .  Then there exists a limit of f in= [ a , ,  an_l,...,al], when 
n ~ 0% fl = w-lira s ~ co ft,. 

Proof. Consider  for N > n  the distr ibution VN, of f iN , -  
[as, aN-- 1,'", aN--,+ 1]" Since fiNn(a) = fiN- 1, , (G[a]) ,  the distr ibution VN, 
does not  depend on N, VN, = V,. Besides, v, are evidently compat ib le  in the 
sense that  

Vn_l[au, au_l  ..... a N _ . + 2 ]  = ~ v.Eau, aN 1,...,aN . + 1 ]  
aN-n+IEN 

The celebrated K o l m o g o r o v  theorem states that  there exists limn ~ ~ v. = v, 
and v. are the finite-dimensional distr ibution of v. It  means  that  there exists 
a weak limit fl of ft. ,  when n ~  0% and /~ is the distr ibution of ft. 
Propos i t ion  3.1 is proved.  

Let  bl,..., b .  ~N.  Denote  V[bl,..., b . ]  = {c~= [ a l ,  a2,...] [al =b l  ..... a . = b . } ,  
which is the segment between the points  [bl  ..... b . ]  and [bl  ..... b .  + 11, If 

P" - [bl  ,..., b , ]  
q, 

p- 
- [bl,..., b .  + 1] 

q'n 

then 

p ' . = ( b . + l ) p ,  l + p n _ 2 = p . + p .  1 

q ' . = ( b . + l ) q ,  l + q .  z = q . + q . - ~  

SO 

P_a~ P'~ ]P .q .  l - q . P . - l ]  1 < 2 2 _ "  
q. q" q,q,  q ,q,  

It  means  that  the Lebesque measure  of V[bl,..., b . ]  is est imated as 

[V[bl ..... b . ] [  < 2  2 n 
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Thus 

[0,1]= U vD~,...,b,] 
bl,...,bn~N 

is a partition of the segment [0, 1 ] into small segments of length less than 
2 2- ~. Since the Gauss density is bounded, a similar estimate is valid for the 
invariant measure: 

f d~ 
u(VEbl,..., bn]) - 2 -n VEbl.....bol (1 + e) In 2 < C- (3.1) 

It is noteworthy that if # is the Gauss distribution and v is the 
distribution of f l=l im,~o~fl~,  then for any segment V[b~,...,b,]= 
[-[b~ ..... bn], [bl,..., b. + 1]] ,  

l~(V[bl ..... b n ] ) =  ]~(r[b ..... ,b l~)  (3.2) 

It enables one to construct the distribution of fl in the following way. 
Consider the Gauss distribution #(de) = d~/[(1 + c~) In 2] as a measure on 
the set of half-infinite sequences (a~, a2,...), a j~N,  where c~= [al ,  a2,...]. 
Then the Gauss map G: ~ {l/a} is the shift (al, a2, . . . )~ (a2, a3,...), so 
the G-invariance of/~ gives that for any n ~> 1, 

/~(al, a2,...,an)= ~ p(a, al, a2,..., an) 
a = l  

Consider for any N>~ 1 a measure #u on the set of half-infinite sequences 

(a_N+l,a_N+2,...), ajeN 

which is the shift of # in N steps to the left, so that 

Pr~N{a_N+ l=b I ..... a N + n = b n } = P r u { a l = b ~  ..... a n = b . }  

for any b 1 ,..., bn s N, n >i 1. The G-invariance of kt implies that the measures 
#N are compatible in the sense that for M >  N >  0, 

ktM(a_~v+,, a N+2,'", an)=ktN(a-N+l,  a-N+2,'", an) 

Hence by the Kolmogorov theorem there exists a limit measure/too on the 
set of infinite sequence {aj,, j e Z }  which is compatible with all #N' It is 
called the natural extension of #. Let 

R: {aj, j E Z } ~ { a  j , j ~ Z }  

822/63/'1-2-18 



272 Bleher 

be the reflection and R*#~ be the distribution of {a j, j e Z } .  Consider 
the distribution R*#~(al ,  a2,...) as a measure v(dfl) on [0, 1], where 
/~ = [al ,  a2,...]. Then v(d/~) is just the distribution of/~. 

P r o p o s i t i o n  3.2. The distribution v(d~) of / ~ = l i m n ~  ~,, con- 
structed in Proposition 3.1, has the following properties: 

(i) It is invariant with respect to the Gauss map G. 

(ii) It has no atoms. 

(iii) It is singular with respect to the Lebesgue measure. 

(iv) The support of v(d~) coincides with [0, 1). 

,':'root. We have Zb~ #(V[b ...... b~])=#(V[b,, . . . ,  b2]), which is 
just the compatibility condition for #, so 

v(V[b2,..., b , ] ) = ~ ( V [ b  ..... , b2])= ~ ~(V[b ..... , b2, b~]) 
b l=  1 

= ~ v(vEb~,b~ ..... b .])  
bl = 1 

which means the invariance of v with respect to the shift (b~, b2,...)--* 
(b2, b3,...), or the G-invariance of v(d~). Next, the estimate 

v(V[bl,... , bn])=#(V[b  ...... b~-])<C.2 " (3.3) 

which follows from (3.1) and (3.2), implies that v has no atoms. A direct 
calculation shows that 

1 In bl In bl + 1 [ 
v(V[b~'b2])=#(V[bl ,b~])=]~--~ b l  b2 _[_ 1 blb2..~-b2-~-lt 

so v ~/~. Remark that # is ergodic with respect to G (see ref. 6); hence #o~ 
is ergodic with respect to shifts and so v is ergodic with respect to G (see 
again ref. 6). Since # is absolutely continuous, it implies that v is singular. 
Finally, (3.2) implies that 

v(V[bl ..... b . ] ) > 0  

for any V[b~,..., b,], so the support of v coincides with [0, 1]. Proposi- 
tion 3.2 is proved. 

The natural extension #~ can be realized as a probability measure on 
the unit square 12= [0, 1] x [0, 1]. Denote by (2 the set of sequences 
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{ajeN,  j e Z } ,  so that #~ is a probability measure on (2. Define the map 
~: f2 --. 12 as 

z: {aj, j ~ Z } ~ ( e ,  f l )=([al ,a2, . . .] ,  [ao, a _ l , a  2,...]) 

One can see easily that z is a one-to-one measurable map from f2 to 
Iirr X Iirr, where Iirr = I \ Q  is the set of irrational numbers in [0, 1]. It 
enables one to define the probability measure z*#~ which can be viewed 
as the realization of/~oo on 12. For the sake of brevity we shall denote z*#oo 
by #oo. Note that for any N~, N2 > 0, 

tL~oo(V[bl,.--, bu21 x V[bo, b_l,...,b N1w1])-..~-#(V[b NIWI,'",bN2]) (3.4) 

Proposition 3.3. The probability measure I~oo(de dfl) o n  l 2 has the 
following properties: 

(i) It is invariant and ergodic with respect to the map 

' )  
G~" (c~, fl) ~ ' [1/a] + fl (3.5) 

(ii) It has no atoms. 

(iii) It is singular with respect to the Lebesgue measure de dfl. 

(iv) The support o f / ~ ( d e  d/~) coincides with 12. 

(v) 

ProoL The map Goo corresponds to the shift {aj, j ~ Z } ~  
{ai+~, j6  Z}, so the Goo-invariance and the ergodicity of Poo follow from 
the G-invariance and the ergodicity of the Gauss measure /~(de). All the 
other statements follow from (3.4) and Proposition 3.2. Proposition 3.3 is 
proved. 

Let 

S: (e, 3) --' (#, e) 

re,: (e , /~)- ,e ,  i1: e-- ,(e,  0) 

rc2: ( e, fl ) --* fi, i2: fl ~ ( O, fl ) 

Then the map Go satisfies the relations 

Go SG~ S = Id (3.6) 
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which is the identity map, and 

~IG~i l=G n, n>~O (3.7) 

(3.6) means that S is the symmetry transformation for G~, so that G~ is 
invertible and 

GL ~ = SG~oS (3.8) 

If p(d~ de) = p(e, e) d~ dfi is an absolutely continuous probability measure 
on 12, define G*p(d~ de) as 

for any Borel set A c 12. 

P r o p o s i t i o n  3.4. Letp(e)d~ be an absolutely continuous probability 
measure on I =  [0, 1 ]. Then 

w-lim (G* )n p(cO d~ de = ~(dc~ de) 
n ~ o ~  

Proof. We have 

ff (a*)~p(~) d~ dB 
V[bl , . . . , bN2  ] x V [ b o , b - l , . . , b _ N l  + 1] 

=ff (a*)"- ~'p(~) d~ de 
V [ b ~ N I  + I , . . . ,bN2] • 1 

The Gauss map G is mixing (see ref. 6), so 

f (O*)" N~p(~) lira da 
n ~ cz~ V [ b _ N I  + I,. . . ,bN2 ] 

= fvcb_~.~,...,b~21 I~(d~) 

= ff #~(d~ dfl) 
V [ b l  ,..., bN2] x V [ b o ,  b -  1 ,..., b NI + 1 ] 

Hence, 

lira de= ffA   (d dpt 
~ l ~ c o  
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for any A = V[b~ ..... bu2] x V[bo, b_1 . . . . .  b - N 1 +  1], which implies the weak 
convergence of ( G * ) " p ( e )  de dfl t o / ~ ( d a  dfl). Proposition 3.4 is proved. 

Corollary of  Proposition 3.4. Let e =  [a~,a2,...] be a random 
variable with an absolutely continuous distribution p (e )de  on [0, 1 ] and 
rn = tan+l ,  a~+;,...], fin = [a~, an_ 1 ..... a~], Yn = (r~, fin)~ I2. Then 

w-lim 7~-  7 
n ~ o o  

where 7 is pao-distributed. 

Proof. It is simply a reformulation of Proposition 3.4. 

Remark finally that the dual measure can be constructed for any 
G-invariant measure #. 

4. L IMIT  SPACING DISTRIBUTION 

In this section we apply the formulas of Section 2 to deduce Theorems 
1.1-1.5. We shall assume that e is a random variable with an absolutely 
continuous distribution p(cr on [0, 1]. According to Proposition 2.4, 
the normalized spacing s in M(p j )  takes values in the set S(J)= 
{1} sj,osj_,u . . .  --} 

Proposition 4.1. There exists w-limj~ ~ sit = st and the distribution 
of st does not depend on p(e) de. 

Proof. Consider some sjl. We shall assume that l is fixed and j > l. 
Let s jl ~ Sm. Then 

l = a j +  . . .  +am+~ + k  (4.1) 

where 1 ~< k ~ am, and by Proposition 2.4 

1 
sjl = (k + rm) (4.2) 

r j  1 " " " r m  

Note that (4.1) implies that m >~j-1 ,  so by (4.1) and (4.2), sjl is determined 
uniquely by aj ..... aj_t+ ~ and rj,..., rj_ t. Moreover, since 

r j _ , = G l - n [ r j _ , ] ,  a j _ n = A G  l n+ l [ r j_ l ]  

sjl is a function of only rj /: 

ss,= Hz(rj l) (4.3) 

where the function H l does not depend on j. 
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Show that  Hi is a piecewise fractional linear function and it is 
noncons tan t  on any  segment. To  this end, put  j =  L Then (4.3) reads 

sH =- HI(~)  (4.4) 

since r0 = 7. Now,  by Proposi t ion  2.3, 

ts -~ k~Si- 1 
sit = ( 4 . 5 )  

with some i ~< 1 + 1 and 1 ~< k ~< a~. Since e~ = ( - 1 )~- Z(qr - p,), we get from 
(4.4), (4.5) that  

H , ( ~ ) = ( _ l ) ~ - , ( q i - k q i  a ) ~  

q t ~ -  Pz 

= ( _  1)~_, (q~-2 + tq~_~)~-- (p,_= + tp,_~) 
qt~ - p~ 

where t = a~ - k. It  proves  that  H~ is a fractional linear function of a o n / m y  
segment V[b~,..., b~]. The last formula  can be rewritten as 

H~(~) = C 
- (P~- 2 + tp~_ ~)/(q,_ 2 + tqi_~) 

- Pt/qt 

where C does not  depend on ~. Since 

P i - 2 + t p i - 1  Pl 

q i -  2 -~- tq,_ 1 ql 

(because Pn/'q, converges mono tonous ly  to ~ for even and odd n's), we get 
that  Hz(~) is noncons tan t  on any segment. 

Return now to Eq. (4.3). By Proposi t ion  3.3, rj t =  GJ- l [~]  ~ t" when 
j ~  ~ ,  where r has the distr ibution dr~I(1 + r) in 2]. Since Ht  is a bounded  
fractionally linear function on any segment VEbl ..... bt],  it implies that  

w-lim sj~= w-lim H l ( r j _ ~ )  = Hl(r ) 
j ~ o o  j--, oo 

(4.6) 

Propos i t ion  4.1 is proved. 
Propos i t ion  4.1 ensures the convergence of sj~ when j--+ ~ .  N o w  we 

show the convergence of the probabil i t ies rt j~--Pr{s = sst} to a limit when 
j "-~ (Z). 

P r o p o s i t i o n  4 .2 .  For  any fixed l =  0, 1, 2,... there exists 
w-limj~ ~ ~jt = rEt and the distr ibution of rot does not  depend on p(c 0 d~. 
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ProoL Let for definiteness l > 2  and S j l ~ S m ,  SO that  (4.1) holds and 
by Proposi t ion  2.4 

zcj, = 2il2-. .  il2 m + O(2 ~/2) 

where the remainder  term is uniform in ~ and L We should prove the 
existence of limj ~ oo ~jt = rot, where 

r~jl = 2il~. . .  il2 (4.7) 

By {4.1), rn>>.j-1, so r~jl is determined uniquely by aj,...,aj_l+~ and 
i l j , -- . ,&-t .  Moreover ,  since i ln=[an ,  an 1 ..... a l ] = G  j ~ [ g ] ,  n<~j, and 
a ~ = A G  j "+1[i l i ] ,  r~jt is a function of ilj, 

= RI(&) 

In any segment ill~ V[b~,...,bt], 

?oH Rl(ill) 2il~ "'" 2 (G l m[fll] = = ilm = 2il2(G [ill] )2 . . .  )2 

-- 2e2_m(ill) = 2 Iql mill-- Pl-ml 2 

Hence Rz(il) is a quadrat ic  noncons tant  function of il in any segment 
g[b l  ..... bl]. 

By Proposi t ion  3.3, w - l i m j ~  i l j=i l ,  where il obeys the dual Gauss 
distribution, so 

w-lim rtjt = w-lim r~jt = w-lim Rt(il j) = Rl(il)  
j ~ o o  j ~ o o  j ~ o o  

(4.8) 

Proposi t ion  4.2 is proved. 
Since Proposi t ions 4.1 and 4.2 give the convergence of Sjl, ztjt only for 

fixed l, it is useful to have a uniform bounds for sit, rcjz. 

P r o p o s i t i o n  4.3.  An absolute constant  C exists such that  for 
any j, l 

l C 
2 t ~> sit i> ~ and rcjz < 

ProoL Prove first that 2Z~>Sjl. For  l = 0 :  2 l =  1 =sjl ,  so it is valid. 
Assume that 2Z~>Sjl and prove that 2 z+l ~>Sj, l+l .  Two cases are possible: 
either Sjl, sj.t+l belong to the same series 

{1 } 
Sin= (k +rm) , 1 <~k <.a m 

r j  1 " " " r m  
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or they belong to different series. In  bo th  cases, however,  

sj, z+l k + l + r ~  k + l  
_ 

sit k + r m 

so sj, t+ 1 ~ < '2 t+ l, which was stated. 

Prove  now that  sit > l/2. We have 

Sjo= 1 > 0  

Sjz>Sjl = 1 + r j >  1 

so for l = 0, 1, 2 the es t imate  sit ~ l/2 is valid. Assume that  

sj, l_2>>.(l--2)/2 for some 1~>3 

and prove  thna t  sjl>~l/2. Two cases are possible:  ei ther sj, t_2, sj, l 1, s)l 
be long to different series 

S m =  (k +rm), l <~k <~am 
r j  1 " " " r m  

or at least  two of them belong to the same series Sm. In the second case 

which implies that  

1 
s j l -  sj, t_2 > 

r a _  1 " " r m 

l - 2  l 
s , , > - 5 -  + = 

> 1  

In the first case 

1 1 
sj.t- 2 -  (am + rm)-- 

r j _ l . . . r  m rj 1 . . . rm_l  

1 
Sj, I 1--  ( l + r m  1) 

r j _  1 . . . r m _ l  

1 
s i t -  ( l + r m  2) 

r j _  1 " ' ' r m _  2 

SO 

Sj! 1 -]- r m _  2 ~ 2 

Sj, I-- 2 r m - -  2 
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Hence 

sjt>~2sj, l 2>~I-2>~I/2 if l~>4 

Sj3 ~ 2Sjl /> 2 > 3/2 

which was stated. 
Estimate now rcjl. Let kj = [pjc~] = qj or q j -  1. If ejt belongs to the 

ruth series Em, i.e., if 

e f l = g m + i g m  1 

then by (2.2) (with k, m, i instead of l, j, k, respectively, in that formula) 

Zo~k<kj 2(k; e0) = 2 2 2 qm--1 qm--i  
7ri'= Zo<<.k<~kjk k Z - k j - Z k z - k j  

= 2 - 1 + O ( 4 . 9 )  

Note that 

On the other hand 

l<<.aj+ ... +a m (4.10) 

qj >aj+ ... +am 
(4.11) 

qm 1 2 

Indeed, 

qj ) (a ja j  l + l )q j_2)(a j+aj_ l )q~ 2 ) ( a j + a j  1)(aj_2+a j 3)qj-4 
~ ( a j q - a j  l q - a j _ 2 @ a j _ 3 ) q j _ 4 ~  . . .  

and 

qj )a jq t_  > a j + l  > a j + l  
1~" 2 q j - l ~ ' - - ' ~  (aj_ 1 + aj 2)qj 3 

>aj+aj  1 + a;_2 
2 

which implies (4.11). By (4.9)-(4.11) we get that 

C 

which was stated. Proposition 4.3 is proved. 

qJ 3 ~  " ' '  
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It is noteworthy that the estimates of Proposition 4.3 cannot be 
improved essentially. Namely, if a t is large and l = a/, then 

s j 1 = l + r t < l +  1 

q2 2 

We prove now Theorems 1.1-1.5. 

Proof  o f  Theorem I. 1. Follows from Propositions 4.1, 4.2. 

Proof  o f  Theorem 1.2. Follows from Proposition 4.3. 

Proof  o f  Theorem 7.3. We have by (4.3) that 

st, = Hl(r t -  l) = H,(  P_  IG~ tl ) 

where i /= (ak, k = 1, 2,...), G~" (ak, 
- j+2 , . . . )  and P - l :  (ak, k =  - j + l ,  
By the Corollary of Proposition 3.4 

k =  1, 2,...) ~ (a~ =ak+j ,  k =  - j +  1, 
- j + 2 , . . . ) ~  [a l+1,a-l+2,. . .] ,  j>~l. 

S O  

In addition, by (4.8) 

w-lim P IG~ q = P 17 
J ~ O O  

w-lim st1 = HI(P 17 ) = Ft(7) 
j ~ v o  

w-lim ~jt=w-lim Rl( f l t )=w- l im R I ( Q j G ~ t l ) = R I ( Q ( 7 )  ) 
j ~ o v  j ~ o v  i ~ ct:~ 

where Qj: (ak, k =  - j + l , - j + 2 , . . . )  ~ [ao, a 1,...,a j+l] and Q: ( a ~ , k ~ Z )  
--* [ao, a ~, a =,...]. Redenoting Rt(Q7) by R/(7), we get that 7rl=Rl(7). 

Theorem 1.3 is proved. 

Proof  o f  Theorem 1.4. Let Z(x)= 1 ifx>~0, and =0  if x < 0 .  Notice 
that 

Pj(x)  = pj(ds) = ~ ~jt = Z(x - sjt)Tzjl 
- o r  {fllsjj<~ x}  / = 0  

where because of Theorem 1.2 the sum is actually finite. So by Theorem 1.3 

w-lim P j (x )=  ~ Z ( x - F t ( ~ ) ) R , ( 7 )  
] ~  / = 0  

which proves Theorem 1.4. 
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Proof of Theorem 1.5. Remark that by Proposition 2.4, ~so= 
( 1 - f i } ) + O ( 2  -s/z) and f i j=[aj,  as_ 1 ..... ax] lies between 1/a s and 
1/(a s + 1). It is well known that for generic ~, a s strongly fluctuates when 
j ~  oc and limj~oo(a, . . .aj) 1Is exists and it is finite, so flj and hence ~jo 
have no limit when j--* oc. Theorem 1.5 is proved. 

5. D I S C U S S I O N  

In the present paper we have studied the limit distribution of the 
energy level spacing for the system of two harmonic oscillators with generic 
ratio of frequencies. The problem is reduced to a similar one for the set of 
levels {)~mn=m+n~lm, n>/O}, ~=co2/col, and follows ref. 3 we consider 
the spacing distribution &(ds) in the energy intervals {0 ~< 2mn < &}, where 
Ps/qJ = [a, ..... as] are the approximants of c~ = [al ,  a2,...]. We have found 
the following properties of ps(ds): 

(i) Discreteness. 

(ii) Highly irregular behavior of &(ds) when j ~  oc for any fixed 
generic e. 

(iii) Existence of l i m j ~  &(ds)=p(ds)  for random ~ with any 
absolutely continuous distribution on [0, 1 ]. 

(iv) Universality of the random limit distribution. 

(v) Powerlike tail of p(ds). 

Discreteness of 

l 

means that each spacing sit has high multiplicity which is proportional to 
the whole number of levels so that the weight ~jt is of order of 1 for any 
fixed l~> 0. Besides, for sjz and rcjt we have uniform estimates sj~ > I/2 and 
gst < C/12. For any fixed ~, sit and ~jt are determined by far coefficients an 
of the expansion of c~ in the continued fraction and so they behave very 
irregularly as j ~ oo. 

To describe the behavior of ps(ds) for j -- ,  o% introduce the space O of 
infinite sequences c o = { a n e N ,  n~Z} .  For any c o = ( a n ~ N ,  n ~ Z } ~ ( 2 ,  
define the following: 

(i) The set 

S(co) = { 1 } w So(cO) w Sl(CO) t3 82(co) u --. -= { 1 = So < s,(~o) < s2(co) < ..-} 
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where 

and 

So(co) = {k+ r0, 1 <~k<~ao} 

1 
Si(c~ r l ' " r  ; ( k + r  i ) , l ~ < k ~ < a - , } ,  i>~l 

r ; -  [a;+ 1, a /+  2,..-] 

(ii) The sequence {n;(co), l~>0} as 

% ( c o )  = (1 - G )  2 

~zz(co) = 2fl~,1 < l~< ao 

~;(co ) = 2fl~ " . . fl2~, ao + . . . + a_~ + ~ < l <~ ao + . . . + a _ ,  i > l 

where/3; = [a ; ,  a ; _  1, a; 2,. . .3. Put 

p(ds; co)= ~ ~;(co) 8 ( s -  s;(co)) ds 
l>~O 

Bleher 

and 

with 

Tj:  ~ =  [a l ,  a2,...] ~ co= {co,,~N, n 6 Z }  

=1  if n ~ - j  

=a ,+y  if n > - j  

L.: [o, 1]-- ,o 

COn 

(5 .1 )  

(5.2) 

It is clear that Tj is the shift in j units to the left, continued by co, = 1 for 
n ~< - j .  Then Proposition 2.4 implies the inequality 

fx fx sup &(ds)  - p(ds; Tj(~)) <. C2 -'/2 (5.3) 
x E R I  oO co 

where C is an absolute constant. This means that there is a f a m i l y  of 
distributions (5.1), labeled by the parameter co~s and for j - - ,  oo, p j (ds )  
is close to p(ds; co) with co= Tj(c 0. It is worth noting that (5.3) remains 
valid for any continuation of co, for n ~< - j  in (5.2). 
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Generally, Tj(e) has no limit and its behavior is quite chaotic as 
j ~ oo. One can say that the system of two harmonic oscillators displays 
"quantum chaos" for generic e in the sense that the energy level spacing 
distribution pj(ds) shows the chaotic behavior as j ~  oo. This chaotic 
behavior is approximated according to (5.3) by the shifts 

TJ: { a ~ , n e Z } ~ { a , + j ,  n e Z }  

in the parameter  space s 
If e is random on [-0, 1 ] with some absolutely continuous distribution 

p(e) de, then Tj(e) weakly converges to the natural extension Yor of the 
Gauss measure and the estimate (5.3) implies the convergence of pj(ds) 
when j--* oo to p(ds; co), where co is y~-distributed. 
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