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The Energy Level Spacing for Two Harmonic
Oscillators with Generic Ratio of Frequencies
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The limit distribution of energy level spacing is studied for the system of two
harmonic oscillators with generic ratio of frequencies. It is proved that for any
fixed generic ratio « no limit distribution exists, but for random « with any
absolutely continuous distribution p(«) dx on [0, 1] a universal random limit
distribution of the energy level spacing exists. Some properties of the random
limit distribution are discussed.
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1. INTRODUCTION

This work derives from the attempts to prove or to disprove the following
general conjecture discussed in ref. 1: Energy level spacing in the spectral
interval E,<E<E, for two harmonic oscillators with generic ratio of
frequencies has a limit distribution when E; —» co. It turns out that the
situation is a little bit unusual and in the present paper we prove and
disprove this conjecture simultancously. The point is that for any fixed
generic irrational ratio « of frequencies no limit distribution exists, but for
random o with any absolutely continuous distribution on [0, 1] a random
limit distribution of energy level spacing exists.
The Hamiltonian of the model is

_pitolq pi+oid;

H 2 2 >

w;, Wy, >0
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The quantum energy levels of the system are labeled by two integer
numbers m, n =0 and they have the form

E,..=Eq+mw, +nw,

The problem is to study the distribution of energy level spacing (the
distance between neighbor levels) in the spectral integral Ey < E,,, <E
when E — co. Since

E,..=Egp+ ®(m+na)

where o =w,/w; >0, the problem is reduced to the similar one for the
sequence

Am=m+na,  mnz0

The case of rational « is not interesting, because of the strong degeneracy
of {4,.,} (see ref. 1); hence we shall assume that o is irrational. Without
loss of generality we may assume that 0 <a < 1.

The distribution of neighbor distances in the sequence A,,,=m + nx
for the first time was considered in ref. 1. In that paper is was shown that
for generic o there is no energy level clustering, which was observed for
nonlinear integrable systems, and some other properties of the spacing
distribution were studied both theoretically and numerically.

In ref. 2 it was discovered that locally the distance between neighbor
energy levels can take only three values, which means strong rigidity of the
local structure of the spectrum and implies strong “repulsion of energy
levels.” It was shown also that the local spacing distribution is fluctuating,
so that no limit of this distribution exists when the spectral interval goes
to oo.

In ref. 3 a particular case of the goiden mean ocz(\/gw 1)/2 was
considered. It was proved that in that case the limit spacing distribution
does exist if the limit is taken by the spectral intervals {0<4,,<f},
j— o, where [}, f5, f3,... are the Fibonacci numbers, and it does not exist
for general sequence {0< 4, <A}, 4 - .

In the present paper we develop the approach suggested in ref 3 to
study the case of generic a. Let

a,+
a2+

a=[a,, a,,.], be the expansion of « into the continued fraction, and

&z [alaa2a-~9 aj]: ]21
J
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be the approximants of «. Denote
Q= {Ap,=m+nalmnz0; p;>2,,>0}

and let 0 <e;o<¢;; <g;, < --- be all the different neighbor distances in Q.
As we shall see, each such distance ¢, is multiple, i.c., there exist many pairs
of neighbor elements 4,,, 4, €Q; with |i,,—2,.,|=¢;. Denote by
L= 1 the multiplicity of the distance ¢; and put

L

‘7l

a1

where |2, is the number of elements in Q. It is clear, that n, is the
Jraction of ¢, among all the neighbor distances, or the probability of ¢
with respect to the uniform distribution on the set of neighbor distances.
Denote by

S,=
ji
8j0

the normalized to ¢;, neighbor distances ¢;, and by
pds)=Y m;0(s—s,)ds
!

the distribution of the normalized neighbor distances. Remark that s, 7,
and p;(ds) depend on a. The main problem we are interested in is the
existence of a limit of the sequence of the distributions p,(ds) when j— co.

We will use weak convergence of probability measures and random
variables (see ref. 4). Recall that a sequence of probability measures u,(dx)
in R* converges weakly to a probability measure u(dx) iff for any bounded

continuous function f(x),

im kaf(X)un(dX)=f S (x) u(dx) (L.1)

RK

Respectively, a sequence of random variables &, e R* converges weakly to
a random variable &eR* iff the probability distributions of ¢, converge
weakly to the one of ¢. We will write in such cases that

p=w-im pu,, E=w-lim &,

n— o0

Theorem 1.1. Let « be a random variable on [0,1] with an
absolutely continuous distribution p(e)de. Then for any />0 there exist
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w-lim; , ., s;=s5, and w-lim; , , n;=m, and the limit random variables s,

and 7; do not depend on the distribution p(a) do.
The following theorem gives uniform estimates for s, and 7.

Theorem 1.2. For any o we have the estimate 2'>s,>/2 and
7, < C/(1+1)*, where C is an absolute constant.

Next we describe the joint distribution of the random variables
{s;=w-lim; , , 55, m,=w-lim,, , pu,; [>0}. To do this we need to
introduce some notations. Let

be the Gauss map and

do

M) = 2

be the absolutely continuous invariant measure of this map. Let p_ (do df)
be the natural extension of u(dw). It is a probability measure on the unit
square [0,1]x [0, 1] and it is invariant and ergodic with respect to the
map

Gy: (o ﬁ)*"({%}’ [I/—ocl]jr_[)

(see Section 3 below). It is worth to note that p.(dxdf) is singularly
continuous with respect to Lebesque measure dodf and its support
coincides with the unit square [0, 1]x [0, 1].

Let y=(a, f)e[0,1]x[0, 1] be a random variable with the distribu-
tion u,(du dp).

Theorem 1.3. Under the assumptions of Theorem 1.1 there exist
bounded functions F,(y), R,(y) on {0, 1]x [0, 1], which are continuous at
almost all v (with respect to the distribution p, of v), such that s,= F,(y),
7,= R,(y), I=0. The functions F,, R,, /=0, are universal in the sense that
they do not depend on the distribution p(x) do.

Theorems 1.2 and 1.3 enable us to prove aiso the following statement.

Theorem 1.4. Under the assumptions of Theorem 1.1

fo o)

lim p;(ds)=p(ds)= Y, n,0(s—s,)ds
Jj—o o

/=0



Two Harmonic Oscillators with Generic Ratio of Frequencies 265

The limit is understood as w-lim of the distribution functions P,(x)=
2w pids) =2 115y Tt
welim P, (x)= P(x)= [ o= 3 =
R e {t1s1<x}
for any x>=0.

Our last theorem shows that for generic fixed o the sequence p,(ds)
has no limit when j— co.

Theorem 1.5. For almost all « the sequence 7, has no limit when
Jj—= .

Remark. The same can be shown for any n;,, (>0, and 5,, /> 1.

2. EXACT FORMULAS FOR NEIGHBOR DISTANCES

Let 0<a<1 be an irrational number. Expand it into the continued
fraction, o=/[a;,a,,..]. Recall some definitions and properties of
continued fractions (see, e.g., ref. 5). The sign = below means a definition,
the sign = means an equality. We have

pn

q_':— [al’ab"-aan]’ (pn: qn):1

Pn=0yDp 1t Pr2; P_1=1 pe=0, p =
42n=0y9y_1+49,—2; q_1=0, gq=1, ¢q,=aqa,
qnpn—-l—pnqnflz(_l)n

qn-1
L =1a,, a,_ i a;]

&= |qna_pn| =(_1)n(qn‘x—pn)
&= _angn—1+8n—2; 871217 go=0a

qnsn—l+qn—18n=1

€y 1 an+rn

1
I‘nzG[l’n_IJE{r }, Fo=u

0, = Alr, 1=| ]
n—1

B, =P 6, = - =”n"”’0=G"[a]"'G0[a]
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Gla]=a, G'[a]=GLG" '[«]]
a,= AG" '[a]= A[G" '[«]]
r,=G"[a]

All the subsequent considerations are based on the following two
propositions.

Proposition 2.1. The set of neighbor distances in the set M, =
{k—1<m+oan<k; mynz=0}, keN, coincides with the same in the set
N,= {{ma}, 0<m<}, where I=[k/a]+1, which is considered on the
circle S'=1[0,1], 0=1.

Proposition 2.2. Let 1<i<a; Then if q, ,+iq,_,<I<q;, >+
(i+1)g,_,, then the neighbor distances in the set N, can be only one of
the following three numbers: ¢, ,—(i—1)e,_;, &_,—ie,_,. The
numbers A(/; ¢) of the neighbor distances of the length ¢ are equal to

Mg )=1—gq;
Mg o= (=g )=q,_,+(i+1)g,. !/ (2.1)
i(hEjfz‘l.gjfl):l*‘quz—iq]q

Proposition 2.1 in proved in refs. 2 and 3. Proposition 2.2 is well known
and we omit its proof. Remark only that it has a simple visual explanation:
When we add the point {/,} to N, to obtain N,, ;, some segment of length
&;_,— (i—1)g;_, is split into two segments of lengths e, , —ie; _;ande,_,.
It continues until all the segments of length ¢; _, — (i —1)e;_, are exhausted.
Then the process begins of splitting the segments of length &;_, —ig; , into
two segments of lengths ¢, _,—(i+1)¢;, ; and ¢; ; and so on.

Remark that ¢,_,—a;e; =¢;, so ¢,_,—is, =¢+(a;—i)g ;=
&;,+ke;,_;, where k=a,—i. We shall call the sequence ¢;+¢;_1, &+2¢,_1,..,
&;+a,e;_ =¢;_, the jth series of neighbor distances and we shall denote it
by E;. One can see easily that any element from E; is less than any element

from E;_,. Denote E={);. E;.

Corollary of Proposition 2.2. All possible neighbor distances in
the sets N, can be only eclements from the set E={),,, £ =
Ujsi{e;+ke; |, 1<k<a;} and the number A(/;e+ke;_;) of the
neighbor distances of length ¢;+ ke, _; in the set N, is equal to

Mlye+ke; y=q,_1—1—q,_,—(a,—k+1)g;,_,|
if g, _,+(a,—k)g; <I<q_+(a—k+2)q_, (2.2)
Ml e+ ke 1)=0 otherwise
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Thus A(l; ¢;+ ke; ) is maximal at I=q,_,+ (a;—k+1)gq;_,, where it
is equal to g, _;, and it decreases linearly from both sides of the maximum
point (see Fig. 1a). Denote

M(A)={A,=m+on|mn=>0,0<41,,<A4}

For Ac M(A) put Pr A= |A|/|M(A4)|, where |A| means the number of
elements in A4, so that Pr 4 is the probability of 4 with respect to the
uniform distribution in M(A). Let ¢ =¢(4,,,) be a function on M(A) which
corresponds to A,,€ M(A), the distance 4,,=4,,—4,,, from i_ to

b
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Fig. 1. The graphs of the functions A(/;¢) on the segment ¢, _;</<g, for various &
(a) a,=2. (b) a,=1.
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the neighbor A4,, (¢ is not defined for Ay). Denote A(e% A)=
{on € M(A)] (L) = £° .

Proposition 2.3. All possible neighbor distances in the set
M(p)={Am=m+on|m n=0; 0<A,,<p;} can be only elements of the
set

EV={¢; \JUEUE, U ---UE ={¢_,;¢e,+ke, |,1<k<a, i<}
and for j— oo
Prd(e;_; p)=(1-8)"+0277?)

PrA(e;+¢,_;p)=p]+0Q2777)
PrA(e;+ke;_y; p) =287 +0(2777), 2<k<q
PrA(3i+k5;‘—1§Pj)zzﬁ?"'ﬂ?'i’o(zﬁj/z), 1<k<a;, i<j

where f,=[a;, a;,_{,, a1 1.

Remark. Here and below O(2 /?) means a remainder which is
estimated by C2 /2 with some absolute constant C.

Proof. Denote [,=[p;/a]l+1=gq;— [(—1)e/a], so that [;=g;, if j is
even and /,;=g¢,+1 if j is odd. Consider first the case when j is even.
Let M(p)=M(p)u {p;}={Am=m+a nlmn=0; 0<4,,<p;}. Then
M p;)=U}_ M,, so by Proposition 2.1 the set of neighbour distances in
M(p;) coincides with the same in all the sets N, with /</,= q;. By Propo-

sition 2.2 and its Corollary this set is EV). Since M(p;)=M(p)\{p;}
the same is valid for M(p,). Next, by formulas (2.1) (see also Fig. 1)

Docicg Mbe1) Xy <icq U=q,-1)
20<l<qjl ZO<1<qjl

___(‘]j_ 21‘—1)2+0<l>
q; 4q;

Recall that ¢, ,/q,=p,. Besides, q,=a;q;,_,+q; »={a;a;_+1)q;_,+
—1nj/2.
a,q;,_3>2q;_,, so g;> C 277 hence

PrA(e;_y; p)=

1<C-2“j/2 (2.3)
q;
It gives that Pr A(g;_,; p,)= (1 — B,)> + O(277?), which was stated. Next,
20<1<q,- Al & 1+ Sj) . qu—q]_1<l$q_, (I— q;+4q;- 1)
ZO<Iqul 20<l<q,l

Pr A(8j71+8j; Pj) =

g’ 1 .
="51+0 (—) — B2+ 002"

q; j
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which was stated. Similarly, one can calculate PrA(e;+ke;_,; p)),
2<k<a;. Now, by the Corollary of Proposition 2.2,
ZO<1sq, ML e+ ke;_y)

PrA(e;+ke;, y;p))= 5 ]
O<isgq

q? 1 .
=2 '_21+0<—>=2B]?~-ﬁf+0(2’/2)
i 4;
For even j, the Proposition is proved. When j is odd, the set of neighbor
distances in A( p;) coincides with the same in all the sets ¥, I</[;=¢q;+ 1,
so in comparison with the case of even j we have an additional set N, .. ;.
Since [N, ,|=¢;+1 all the probabilities Pr A(e,+ke;_,; p;) change in
O(1/g;), which is by, (2.3), O(277?). This remark proves Proposition 2.3
completely.
Introduce the function s=s(4,,,) of rormalized neighbor distances in

M(pj)’

£ _ )

gjfl

5=

81-71

Proposition 2.4. All possible normalized neighbor distances in
M(p;) can be only elements of the set

SP={1}UuS,US,_;u--US,

where

1
S;={k+r,1<k<a}, s,:{__
. —

i

(k+r,.),1<k<a,}, 1<i<)

and
Pris=1}=(1-B)+ 02~
Pris=1+r}=+0Q277?%)
Pr{s=k+r}=28+0277?), 2<k<g

1 .
Pr {s=——(k+r,-)}:2[3}---ﬁf+0(21/2), 1<k<a,
r]——ll..ri

Proof. All possible values of s=¢/e, ;| are

o LA et (280

&1 &1 €1 Fi—p-¥;

which was stated.
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3. CONSTRUCTION OF DUAL GAUSS DISTRIBUTION

This section is auxiliary. Here we prove the existence of lim,,_, ., f,,= 5,
where f,=1[a,, a,_1,.,a;] and a=1[a,, a,,..] obeys the Gauss distri-
bution do/[(1+a)In2]. We call the distribution of § the dual Gauss
distribution and we study some properties of it.

Proposition 3.1. Let «=[a,, a,,..] obey the Gauss distribution
do/[ (1 4+ o) In27]. Then there exists a limit of ,=[a,,a,_;,..a,], when
n— oo, f=w-lim _ , f,.

Proof. Consider for N>n the distribution v,, of f,,=
[ans Ay 1o Ay _pny1]- Since By (a)=PBy_1 (G[a]), the distribution v,
does not depend on N, v,, =v,. Besides, v, are evidently compatible in the
sense that

Vooil@n, Gy iy Gy ni2]= Z Valay, Gy 15 Gy i ]
ay—n+1€N

The celebrated Kolmogorov theorem states that there exists lim,, _, . v, =V,
and v, are the finite-dimensional distribution of v. It means that there exists
a weak limit § of B,, when n— oo, and pu is the distribution of S.
Proposition 3.1 is proved.

Let by,..., b,eN. Denote V[b,,...b,]1={a=[a,, as,..]la,=b,,..,a,=b,},
which is the segment between the points [b,,.., b,] and [b,,.., b, + 17. If

Pn
_=[b17->bn]
qn
£/r£=|:[)1a""b;1+1]
9
then
p;r:(bn+1)pn71+pn——2=pn+pn71
q;t:(bn+l)qn71+qn72=qn+qn—l
SO
, — 1
gﬁ_p_,,,zlpnqnq ?np,._llz g2
9n  4n 9n9n 49

It means that the Lebesque measure of V[b,,..., b,] is estimated as

Vb, b ]| <2277
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Thus

[0,11= U VIhisb,]

b1snbneN

is a partition of the segment [0, 1] into small segments of length less than
22-" Since the Gauss density is bounded, a similar estimate is valid for the
invariant measure:

dot

WV, b,,])sf c.27" (3.1)

It is noteworthy that if u is the Gauss distribution and v is the
distribution of f=Ilim,_,  f,, then for any segment V[b,,.,b,]=
[[bl’“'?bn]a [bls-"a bn+1]]5

Y(VIbyssb, 1) = 4V By by 1) (3.2)

It enables one to construct the distribution of § in the following way.
Consider the Gauss distribution p(do)=du/[(1 +a)In 2] as a measure on
the set of half-infinite sequences (a,, ,,..), a;€ N, where a=[a,, a,,..].
Then the Gauss map G: a— {l/o} is the shift (a,, a,,..) = (a,, a3,...), SO
the G-invariance of u gives that for any n> 1,

o0
way, ay,na,)=Y, wa, a, as,.., a,)

a=1

Consider for any N> 1 a measure p, on the set of half-infinite sequences
(@_Ni1, @ Ni20)s a,eN
which is the shift of g in N steps to the left, so that
Prod{a_yi1=bia yo,=b,}=Prla,=b,.,a,=b,}

for any by,..., b, € N, n= 1. The G-invariance of y implies that the measures
uy are compatible in the sense that for M > N >0,

luM(a—N+17 a7N+29"'7 an):uN(a)N+l7 a——N+2:--~a an)

Hence by the Kolmogorov theorem there exists a limit measure u,, on the
set of infinite sequence {a,,, jeZ} which is compatible with all puy. It is
called the natural extension of u. Let

R: {a;,jel}—~{a ,, jel}

822/63/1-2-18
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be the reflection and R*u,, be the distribution of {a_;, je Z}. Consider
the distribution R*u_(a,, a,,..) as a measure v(df) on [0, 1], where
p=1La,, a,,..]. Then v(dp) is just the distribution of S.

Proposition 3.2. The distribution v{df) of p=Ilim,_ . §,, con-
structed in Proposition 3.1, has the following properties:
(i) It is invariant with respect to the Gauss map G.
(ii) It has no atoms.
(il1) It is singular with respect to the Lebesgue measure.
(iv) The support of v(df) coincides with [0, 1].

Proof. We have ¥ _, w(V[b,,.... b;1) = u(V[b,,.,b,]), which is
just the compatibility condition for g, so

V( V[b25"'5 bn]) =,U,( V[bm'", b2:|) = Z ,u( V[bnv"w b2> b]])

o0

= Z \)( V[b17 bz,«--a bn])

by =1

which means the invariance of v with respect to the shift (b, b,,..) —
(by, bs,...), or the G-invariance of v(df). Next, the estimate

V(Y[ Bysees b, 1) = w(V[bpys by 1) < C 277 (3.3)

which follows from (3.1) and (3.2), implies that v has no atoms. A direct
calculation shows that

1 b by+1 |
b, =uw(V[b, b)) =—|1 L !
v(VLby, by1)=p(VLby, b,]) In 2 nb1b2+1 nb1b2+b2+1}
Zu(V[by, b,1)

so v# u. Remark that yu is ergodic with respect to G (see ref. 6); hence u,
is ergodic with respect to shifts and so v is ergodic with respect to G (see
again ref. 6). Since u is absolutely continuous, it implies that v is singular.
Finally, (3.2) implies that

y(VIby s b, 1) >0

for any V[b,,.., b,], so the support of v coincides with [0, 1]. Proposi-
tion 3.2 is proved.

The natural extension u,, can be realized as a probability measure on
the unit square I>=[0,1]x[0,1]. Denote by Q the set of sequences
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{a;eN, jeZ}, so that u,, is a probability measure on . Define the map
. Q- 1% as

T {aj’ jE Z} d (OC, ﬁ) = ([ah aza"']’ [‘10, a_i, afz’---])

One can see easily that t is a one-to-one measurable map from Q to
L. x I, where I,.=I\Q is the set of irrational numbers in [0, 1]. It
enables one to define the probability measure t*u . which can be viewed
as the realization of i, on 2. For the sake of brevity we shall denote t*u,
by u.,. Note that for any N,, N, >0,

oo (V1 s ba, 1 X Vb, b_iyb ni1]) = p( V[belﬁ-l?"'asz]) (34)

Proposition 3.3. The probability measure u.,(dx df) on I? has the
following properties:

(i) It is invariant and ergodic with respect to the map

o wn-(Bod) e

(ii) It has no atoms.
(iii) Tt is singular with respect to the Lebesgue measure du dp.

(iv) The support of u(dx dB) coincides with 1%
(v)

f{ﬂ , ool d) = j{ _,, ol dP) = v(dp)

Proof. The map G, corresponds to the shift {a;, jeZ}—
{a;.,jeZ}, so the G -invariance and the ergodicity of u,, follow from
the G-invariance and the ergodicity of the Gauss measure u(dx). All the
other statements follow from (3.4) and Proposition 3.2. Proposition 3.3 is
proved.

Let

St (o B)— (B, a)

7 {0, f)—a, it o—(a, 0)

(e, B)= B, i f—(0,B)
Then the map G, satisfies the relations

G,.SG,S=Id (3.6)
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which is the identity map, and
n, G i =G, nz0 3.7)

(3.6) means that S is the symmetry transformation for G, so that G, is
invertible and
G, '=5G,S (3.8)

If p(do df) = p(a, f) do dff is an absolutely continuous probability measure
on I2, define G* p(du dp) as

| Grptandp)=| , ptaxdp)

for any Borel set 4 = I°

Proposition 3.4. Let p(a)da be an absolutely continuous probability
measure on /= [0, 1]. Then

w-lim (G%)" p(a) dx df = pi. (do df)

Proof. We have

I (G%)" plar) dac df
VIbism by 1% VIbo b1, nboN +1]

(G%)'~ ™ pla) du dp

=

The Gauss map G is mixing (see ref. 6), so

V&N +1sm

(G*)"= ™ p(a) du
sz

lim j (G*)"~ ™ p(ar) da

VIb_ny +15bn, ]

j (o)
Vb ~tenban]

Hoo(dor dff)

Hence,

lim | fA (G%)" p(=) da dﬂ=fAuoo(da ap)
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for any A=V[by,..bn,]1 xV[bho, b_1,.., b_x, 4], which implies the weak
convergence of (G%)" p(o) du df to p(dx df). Proposition 3.4 is proved.

Corollary of Proposition 3.4. Let a= [al,bz,...] be a random
variable with an absolutely continuous distribution p(«)do on [0, 1] and

Fo= [an+l’ an+27"']9 ﬁn‘: [an’ Ay 15 611], ’))n=(l”n, :Bn)EIZ' Then

w-lim y,=7y

[(andie el

where y is u . -distributed.

Proof. 1Tt is simply a reformulation of Proposition 3.4.

Remark finally that the dual measure can be constructed for any
G-invariant measure p.

4. LIMIT SPACING DISTRIBUTION

In this section we apply the formulas of Section 2 to deduce Theorems
1.1-1.5. We shall assume that « is a random variable with an absolutely
continuous distribution p(a) de on [0, 1]. According to Proposition 2.4,
the normalized spacing s in M(p;) takes values in the set SU)'=
{13 US,US;, U - US ={l=5,<5,;<5;,< -}

Proposition 4.1. There exists w-lim; _, ,, s;,= s, and the distribution
of s, does not depend on p(a) do.

Proof. Consider some s5,. We shall assume that / is fixed and j>1
Let 5,€S,,. Then

l=a;+ - +a,,, +k (4.1)
where 1<k <a,,, and by Proposition 2.4
1
sj,=——ﬁ—(k+rm) (4.2)

Note that (4.1) implies that m > j—/, so by (4.1) and (4.2), 5 is determined

uniquely by a;,..,a;,_,,, and r;,.., r; ,. Moreover, since

J

rj—nzGI—n[rjvl]: a'~n=AGlin+I[rj—l]
s, is a function of only r;_;:
Sjlel(rj—l) (4.3)

where the function H, does not depend on .
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Show that H, is a piecewise fractional linear function and it is
nonconstant on any segment. To this end, put j=/ Then (4.3) reads

sy=H(a) (4.4)
since vy =a. Now, by Proposition 2.3,

&+ ke, _
sy =t (45)
!

with some i </+ 1 and 1 <k <a,. Since ¢;=(—1)""'(g,a— p,), we get from
(4.4), (4.5) that

i,[(qi'—kqifl)a" (pi—kp,_,)

H(a)=(-1)
q,x—py
:(_1)!‘_1(Qi~2+tqi——l)a_"(pi—2+tpi*1)
%= Py

where 1= a,— k. It proves that H, is a fractional linear function of « on any
segment V[b,,.., b,1. The last formula can be rewritten as

a—(p; > +ip,_ NG 2+ 1q;_1)

H,(x)=C
2) x—plq

where C does not depend on «. Since

Pi)2+tPi—1¢£1
qi_2+19,1 q

(because p,/q, converges monotonously to « for even and odd #’s), we get
that H,(«) is nonconstant on any segment.

Return now to Eq. (4.3). By Proposition 3.3, r;_,= G’ 'Ta] ~r when
j— oo, where r has the distribution dr/[ (1 +r)In 2]. Since H, is a bounded
fractionally linear function on any segment V[b,, .., 5,], it implies that

w-lim s, =w-lim H,(r,_,)=H,(r) (4.6)
j=r oo joreo
Proposition 4.1 is proved.

Proposition 4.1 ensures the convergence of s, when j— co. Now we
show the convergence of the probabilities 7, =Pr{s=s,} to a limit when
J— .

Proposition 4.2, For any fixed /=0,1,2,.. there exists
w-lim, _, ,, 7, =7, and the distribution of #, does not depend on p(a} dx.
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Proof. Let for definiteness />2 and s;,€ S,,, so that (4.1) holds and
by Proposition 2.4
ny=2p7 - B+ 02777

where the remainder term is uniform in o and . We should prove the
existence of lim; n;, where

ty=2p; B (4.7)
a

By (4.1), mzj—1, so 7, is determined uniquely by a;,..,a; ,,, and
Bjsr B;— ;. Moreover, since f,=[a,,a, ,,...,a;]=G'""[f,], n<j, and
a,=AG’~""[B,], %, is a function of §,,

= R/(f))

— 00 jl“

In any segment §,€ V[b,,..,b,],

= R,(B)) = 2[3? ) ".Bfnzzﬂlz(G[ﬂ/])z e (Glim[ﬁﬂ)z
=26, (B) =219, wBi—pi_nl®

Hence R,(f) is a quadratic nonconstant function of f in any segment
Viby,.., b1

By Proposition 3.3, w-lim; , ., f,=f, where f obeys the dual Gauss
distribution, so

w-lim 7, = w-lim nj,—-w hm R,/(P ;)=R,(P) (4.8)

Jj— Jj—= o0

Proposition 4.2 is proved.
Since Propositions 4.1 and 4.2 give the convergence of s;, n; only for
fixed /, it is useful to have a uniform bounds for s, 7.

Proposition 4.3. An absolute constant C exists such that for
any Jj,

2>=s

{
j,>§ and <

A2

Proof. Prove first that 2'>s,. For [=0: 2'=1=y5,, so it is valid.
Assume that 2’>s and prove that 2ty s,1+1- Two cases are possible:
either s, 5,4, belong to the same series

1
sz{——— (k+rm),1$k<am}
rj—l”'rm
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or they belong to different series. In both cases, however,

sj’,+1=k+1+rm<k+1
Sj/ k+rm = k

<2
SO 841 <2'*', which was stated.
Prove now that s;,>//2. We have
S;0=1>0
Sp>s=1+r>1
so for /=0, 1,2 the estimate 5,>//2 is valid. Assume that
5,-22(1-2)2 forsome [=3

and prove thnat s;,>1//2. Two cases are possible: either s;, 5, 5;,_,, sy
belong to different series

r, oF

j—1" m

1
Sm={—————(k+rm),1<k<am}

or at least two of them belong to the same series S,,. In the second case

1
Sjl_Sj,[——2> >1
UMEPREE
which implies that
>l—2+1 /
S, =— ==
"7 2
In the first case
1 1
Sji—2= (@t 1) =
j—1 m j—1 Frm—1
1
Sj—1= (A +rm,_y1)
P Pt
1
sjl— (1+rm72)
Fioy T2
)
Sj/ =1+rm—2/2
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Hence

$y=22s, . =1-2212 if >4
3228, 22> 32

which was stated.
Estimate now n;,. Let k;=[p/a]=gq; or q;— 1. If ¢, belongs to the
mth series E,,, i.e., if

811:8m+i8m71
then by (2.2) (with k, m, i instead of /, j, k, respectively, in that formula)

_20<k<k/’{(k;81j) 95 _» dn 1

Ty= =2 =
7 Zoskskjk k;?_kj k/?_kj
2 1
=zqm—;1[1+o<—)] (49)
q; 4q;
Note that
I€a;+ - +a, (4.10)

On the other hand

(4.11)

Indeed,
gz(aa_+1)q_r2(a;+a,_1)q > (a;+a,_)Na;_r+a;_3)q,_,4
Z(a;+a,_+ta_,+a,_3)q,_ 4= -

and

a;+1 a;+1
q;2a;,q9,_, = ) g1 2 ) (@,_1+a;_5)q; ;

aj‘f‘ajil‘i‘aj_z > ..
= 2 (]173/ :

which implies (4.11). By (4.9)-(4.11) we get that
"y <

Jl\l—i

which was stated. Proposition 4.3 is proved.



280 Bleher

It is noteworthy that the estimates of Proposition 4.3 cannot be
improved essentially. Namely, if a; is large and /=a;, then

q;_, 2

We prove now Theorems 1.1-1.5.
Proof of Theorem 1.7. Follows from Propositions 4.1, 4.2.
Proof of Theorem 1.2, Follows from Proposition 4.3.

Proof of Theorem 1.3. We have by (4.3) that
Sjlel(rj—/)=H1(P41G£o’7)

where n=(ay, k=1,2,..), GL: (a;, k=1,2,.) = (ay=a,,,;, k=—j+1,
—j+2,.)and P_;: (ap, k= —j+1, —j+2,.)>[a_;.1,a_ 2.1, J2L
By the Corollary of Proposition 3.4

w-lim P_,G/ n=P_y

J=>

S0
w-lim s, = H,(P_;7)= F,(y)

jo

In addition, by (4.8)

w-lim 7 = W;l_i}?o Rl(ﬁj) = W;lingo Rl(QjGjoo n)=R,(Q(y))

j— oo

where Q;: (ay, k= —j+1,—j+2,.) > [ag,a_,,..,a ;. 1and Q:(a;, keZ)
- [ay,a_,,a_,,..]. Redenoting R,(Qy} by R,(y), we get that w,= R,(y).
Theorem 1.3 is proved.

Proof of Theorem 1.4. Let y(x)=1if x>0, and =0 if x <0. Notice

that
P=[ pla= T m=3 ax—sim,

—® {Hlsp<x} =0

where because of Theorem 1.2 the sum is actually finite. So by Theorem 1.3

w-lim P, (x i w(x—F,(y)) R,(v)

j oo

which proves Theorem 1.4.
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Proof of Theorem 1.5. Remark that by Proposition 2.4, m,, =
(1—-B)+0(2~*) and B,=[a;,a, ;,.,a;] lies between 1/a, and
1/(a;+ 1). Tt is well known that for generic a, a; strongly fluctuates when
j— oo and lim; , (@, ---a,)" exists and it is finite, so f§, and hence 7,
have no limit when j— co. Theorem 1.5 is proved.

5. DISCUSSION

In the present paper we have studied the limit distribution of the
energy level spacing for the system of two harmonic oscillators with generic
ratio of frequencies. The problem is reduced to a similar one for the set of
levels {4,,=m+na|m, n=0}, a=w,/w,, and follows ref. 3 we consider
the spacing distribution p,(ds) in the energy intervals {0< 4, < p,}, where
pi/q;,=ay,., a;] are the approximants of « = [ay, a,,...]. We have found
the following properties of p;(ds):

(1) Discreteness.
(i) Highly irregular behavior of p,(ds) when j— oo for any fixed
generic o.
(iii) Existence of lim;_ , p,(ds)=p(ds) for random « with any
absolutely continuous distribution on [0, 1'].
(iv) Universality of the random limit distribution.

(v) Powerlike tail of p(ds).

Discreteness of
pds)y=Y m,;6(s—s;)ds
!

means that each spacing s, has high multiplicity which is proportional to
the whole number of levels so that the weight 7, is of order of 1 for any
fixed /> 0. Besides, for s, and n, we have uniform estimates s, >//2 and
n,; < C/I*. For any fixed «, s, and 7, are determined by far coefficients a,,
of the expansion of o in the continued fraction and so they behave very
irregularly as j— oo.

To describe the behavior of p (ds) for j— oo, introduce the space £ of
infinite sequences w = {a,eN, neZ}. For any w=(a,eN, neZ}eQ,
define the following:

(1) The set

S(w)={1}uSyw)u S(w)u SH{w)u - ={l=5,<s5(0) <5 (0)< -}
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where

So(w):{k+r0,1<k<ao}

1
S(o)={ g kraisksa f

-1 —i
and
m=lai a0,
(i) The sequence {7,(w), /=0} as
To(w)=(1— ﬂu)z
”1(w)=ﬂ(2)
(w)=2B3,1<I<a,
n(w)=2B5---B* Lag+ - +a_,,. <l<ay+ - +a_,ix=!

where 8,=[a,,a,_,,a, ,,..]. Put

plds; )= Y m /(@) d(s —s(w)) ds (5.1)
150
and
T,: a=[a),a.1>0={w,eN,nel}
with
@,=1 if n<—j
—a,., if n>—j (52)
T,: [0,1]1-Q

It is clear that T is the shift in j units to the left, continued by w, =1 for
n< —j. Then Proposition 2.4 implies the inequality

r Pj(dS)——JX p(ds;fl}(a))lgcz—;/z (53)

—® —w

sup

xeR!
where C is an absolute constant. This means that there is a family of
distributions (5.1), labeled by the parameter we 2, and for j— oo, p,(ds)
is close to p(ds; w) with @ = T,(«). It is worth noting that (5.3) remains
valid for any continuation of w, for n< —j in (5.2).
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Generally, T;(o) has no limit and its behavior is quite chaotic as
Jj— o0. One can say that the system of two harmonic oscillators displays
“quantum chaos” for generic « in the sense that the energy level spacing
distribution p,(ds) shows the chaotic behavior as j— oco. This chaotic
behavior is approximated according to (5.3) by the shifts

T: {a,nel}-{a,, ,nel}

in the parameter space 2.

If o is random on [0, 1] with some absolutely continuous distribution
pla) do, then T,(a) weakly converges to the natural extension p,, of the
Gauss measure and the estimate (5.3) implies the convergence of p,(ds)
when j— oo to p(ds; w), where w is p-distributed.
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